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Abstract. Effective magnetic moments of drift Rydberg atoms in strong magnetic fields are obtained for
different energy and angular-momentum states. Classical two-body trajectory calculations and quantum-
mechanical one-body calculations are employed. For heavy atoms such as rubidium, the trapping dynamics
can largely be explained by the net magnetic moment due to the cyclotron and the magnetron motion
of the Rydberg electron. In light Rydberg atoms such as hydrogen, the intrinsic two-body nature of the
dynamics becomes manifest in that the ionic motion significantly contributes to the effective magnetic
moment. Also, light drift Rydberg atoms exhibit an anisotropic response to field-inhomogeneities parallel
and transverse to the magnetic-field lines. The results are relevant to magnetic trapping of Rydberg atoms
in strong-magnetic-field atom traps.

PACS. 32.80.Rm Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states) –
32.80.Pj Optical cooling of atoms; trapping – 32.10.Dk Electric and magnetic moments, polarizability –
32.60.+i Zeeman and Stark effects

1 Introduction

Recently, cold Rydberg atoms have received considerable
attention because they can be useful in quantum informa-
tion processing [1], antihydrogen production [2], precision
measurements [3], and in the study of complex collision-
induced dynamics [4–8]. In some proposals, the ability to
trap Rydberg atoms is highly desired in order to achieve
full control over both the internal and external degrees of
freedom of the atoms [3,9–11]. Due to the quasi-free na-
ture of Rydberg electrons, Rydberg atoms are highly sus-
ceptible to a variety of external fields. These large suscep-
tibilities are the basis for Rydberg-atom-trapping methods
that have been proposed [3,9–11].

The trapping of long-lived highly-excited atoms raises
some issues that are distinct from those in other atom-
trapping methodologies. Because of their large size,
Rydberg atoms cannot be treated as point-like particles
in locally constant trapping fields. The length scale over
which the trapping fields vary can be of the same order
as the size of the atom to be trapped. Consequently, the
determination of electronic states and atom trapping po-
tentials can become quite involved [3,10,11]. The situa-
tion is complicated by the high density of electronic states
and trapping-field-induced couplings between those states.
The combined quantum states of the center-of-mass and
electronic degrees of freedom can be quite different from
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the field-free states [3,10,11]. In Rydberg-atom trapping,
it also appears very important to consider how stable the
trapped atoms will be against transitions into un-trapped
states due to radiative interactions and couplings induced
by stray electric or magnetic fields. In recent experiments,
we have found that these potential difficulties can be
overcome in high-magnetic-field (high-B) Rydberg-atom
traps [12].

In collision-rich environments, strongly magnetized
Rydberg atoms are expected to mostly reside in so-called
“guiding-center” drift states [13], because there is a large
density of such states and because they are long-lived.
Antihydrogen Rydberg atoms prepared in nested Penning
traps [14–16] presumably have been in such states. In con-
text with the antihydrogen work, it has recently been
shown that drift-state Rydberg atoms can be trapped
in homogeneous magnetic and inhomogeneous electric
fields [17,18]. Due to their electric polarizability, drift-
state Rydberg atoms are attracted to regions of large elec-
tric fields. In the present paper, we theoretically investi-
gate the magnetic trapping of drift-state Rydberg atoms
in inhomogeneous magnetic fields. We cover the trapping
of both heavy (rubidium) and light (hydrogen) Rydberg
atoms in high-B traps. The methods we utilize are two-
body classical trajectory calculations in strong, inhomo-
geneous B-fields and one-body quantum-mechanical cal-
culations. The quantum calculations describe the case of
infinite nuclear mass, which usually is a good approxi-
mation for heavy atoms such as rubidium. We apply the
obtained results in order to determine the character of
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the Rb Rydberg atoms that have recently been trapped
in a high-B atom trap [12]. The results obtained on the
trapping of H Rydberg atoms may become useful in anti-
hydrogen research.

2 Trapping drift Rydberg atoms

2.1 Review of drift Rydberg atoms

In strongly magnetized Rydberg atoms, the dominant in-
teraction of the Rydberg electron often is the interaction
with the external magnetic field. In the guiding-center
drift Rydberg atoms that we study in this paper, this is
always the case. Classically, the motion of the Rydberg
electron in these atoms is characterized by a fast, small-
diameter cyclotron oscillation, a bounce motion parallel
to the magnetic-field lines (“z-bounce” motion), and a
slow E × B magnetron drift of the electron in the plane
transverse to B. The z-bounce motion is driven by the
component of the atomic Coulomb electric field parallel
to B, while the magnetron drift results from the electric-
field component transverse to B. Due to the different time
scales of these three components of the Rydberg-electron
motion, the drift Rydberg states are stable [13] and can be
quantized using semiclassical quantization rules [19]. The
cyclotron component of the motion generates a level struc-
ture similar to that of free-electron Landau levels [20],
while the z-bounce motion generates Rydberg-like level
series below each Landau level [19,21,22]. This quantiza-
tion structure entails multiple ionization potentials and a
complex electric-field ionization behavior [23]. The finest
quantization structure of drift-state atoms is due to the
slow magnetron motion and becomes manifest when solv-
ing the problem for different values of the conserved mag-
netic quantum number m [22].

Following the outlined hierarchy of interactions, the
dominant interaction of a drift-state Rydberg electron is
that with the magnetic field. If the magnetic field is inho-
mogeneous, the guiding center of the quasi-free Rydberg
electron will experience forces similar to those acting on
free electrons gyrating in the same field. A strategy to
trap drift-state Rydberg atoms therefore is to apply an
inhomogeneous magnetic field suited to trap the quasi-
free Rydberg electron. The entire atom may then become
trapped because of the weak residual interatomic Coulomb
force that binds the atomic core to the trapped electron.

While this approach is oversimplified, we can use it to
point out a few fundamental differences between the mag-
netic trapping of ground-state atoms and atoms in drift
Rydberg states. Magnetic trapping of ground-state atoms
is based on “adiabatic following” of the atomic magnetic
moment, making it possible to derive the atomic center-
of-mass dynamics from a conservative trapping potential
V (R) = −µzB(R), where R is the atomic center-of-mass
coordinate and µz is the (fixed) projection of the magnetic
moment onto the local magnetic-field direction. In con-
trast, the trapping of free electrons in suitable inhomoge-
neous magnetic fields exploits a combination of magnetic
bottle forces, which act in the magnetic-field direction,

Fig. 1. Electron and ion trajectories in (a) rubidium and (b)
hydrogen drift Rydberg atoms at 3 T field integrated over 400
cyclotron periods of the electron. The magnetic field is perpen-
dicular to the xy-plane. In both cases, the magnetron frequency
of the electron and the orbital frequency of the ion are the
same, and ρe ≈ 15000. ρe and ρi are related by equation (3).
In the hydrogen case, ρi ≈ 3500.

and gradient and curvature drift motions transverse to B.
As outlined in reference [24], the magnetic-bottle effect
can be formulated using a one-dimensional conservative
potential V (η) = −µzB(η), where η is a curved coordi-
nate along the magnetic field lines and µz the adiabati-
cally conserved magnetic moment of the cyclotron motion
(which always points in the −η̂ direction). However, the
free-electron drift motions transverse to B cannot be de-
scribed by a potential formulation. Thus, magnetic forces
on the center-of-mass of weakly bound Rydberg atoms in
strong, inhomogeneous magnetic fields may not always be
derivable from conservative potentials. Also, one should
expect the response of such atoms to field inhomogeneities
to be anisotropic.

2.2 Simple models of the magnetic moment
of drift Rydberg atoms

The (classical) motion of the Rydberg electron in drift
states, shown in Figure 1, can be decomposed into a fast
cyclotron motion, an intermediate bounce motion par-
allel to the magnetic field lines, and a slow magnetron
drift [19,21,22]. Both the cyclotron and magnetron mo-
tion are equivalent to circular currents and therefore con-
tribute to the net magnetic moment of the Rydberg atom.
Thereby, the average electric field that gives rise to the
magnetron motion depends on the bounce motion, and
so does the magnetron magnetic moment. A third con-
tribution to the magnetic moment arises from the ionic
motion, which in bound atoms is a circular motion in the
plane transverse to B with a frequency identical to that of
the electron magnetron motion. In the following, expres-
sions for the net magnetic moment of stable two-particle
drift atoms are provided.

Regardless of the mass of the ionic particle, the cy-
clotron motion of the electron (smallest circular motion
in Fig. 1) produces a magnetic moment, in units of the
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Bohr magneton µB, of

µcyc = − 2Ecyc/B, (1)

where Ecyc is the cyclotron energy in atomic units and B
the magnetic field in atomic units. The magnetron motion
of the electron, i.e. the E×B-drift motion of the electron in
the Coulomb field of the ion, produces a magnetic moment
opposite to that of the cyclotron moment (large circular
motions in Fig. 1). The magnetron magnetic moment, in
the unit of Bohr magneton, is given by

µmag = + 〈Ftrans〉(ρe − ρi)/B, (2)

where (ρe − ρi) is the absolute radius of the electron mag-
netron motion, and 〈Ftrans〉 is the transverse component
of the atomic Coulomb field averaged over one period
of the z-bounce motion. The magnetic moment due to
the ionic motion depends on the absolute radius of the
ion motion, ρi (see Fig. 1). Lorentz and Coulomb force
act in the same direction and generate the centripetal
force on the ion orbit. The orbital frequency of the ion
equals the magnetron frequency of the electron, which is
ω = 〈Ftrans〉/ [B(ρe − ρi)]. One finds that

ρi =
ρ2
e

ρe + Mi〈Ftrans〉/B2
, (3)

where Mi is the ion mass, and

µion = ρ2
i 〈Ftrans〉/(ρe − ρi). (4)

For planar electron motion, the electric field 〈Ftrans〉 =
1/ρ2

e. For non-planar motion, 〈Ftrans〉 is obtained using
the inverse of the velocity v|| of the electron parallel to B

as a weighting factor, P (z) = 1/
√

2(E|| + 1/
√

ρ2
e + z2).

There, E|| is the total energy of the z-bounce motion. With

the amplitude of the z-bounce motion, z0 =
√

E−2
|| − ρ2

e ,
we have

〈Ftrans〉 =

∫ z0

−z0

ρe√
z2+ρ2

e
3 P (z)dz

∫ z0

−z0
P (z)dz

. (5)

The following equations (6–9) provide the net magnetic
moment, µ = µcyc+µmag+µion, for four cases of particular
interest. In the most general case when the ion mass Mi

is finite and the electronic motion is non-planar,

µMi = −2Ecyc

B
+

〈Ftrans〉(ρe − ρi)
B

− ρ2
i 〈Ftrans〉

B(ρe − ρi)
(6)

with ρi given by equation (3). For the case of planar mo-
tion, the results reduce to ρi = ρ2

e/[ρe + M/ρ2
eB

2] and

µMi,planar = −2Ecyc

B
+

ρe − ρi

B ρ2
e

− ρ2
i

B ρ2
e (ρe − ρi)

. (7)

For the case of infinite ion mass and non-planar motion,
the results reduce to ρi = 0 and

µMi=∞ = −2Ecyc

B
+

〈Ftrans〉ρe

B
. (8)

Finally, for the simplest case of infinite ion mass and pla-
nar motion it is ρi = 0 and

µMi=∞,planar = −2Ecyc

B
+

1
B ρe

. (9)

As we will find, these moments describe magnetic forces
quite well for the case that the field inhomogeneity is par-
allel to B, i.e. ∇|B|‖B. This is not surprising because for
guiding-center drift orbits such as depicted in Figure 1
all three motions that contribute to the dipole moment
— cyclotron, magnetron, ion motion — are circular, and
the magnetic force simply reflects the non-zero projec-
tion of the respective Lorentz forces onto the magnetic-
field directions at the centers of the respective circles.
Low-magnetic-field-seeking character, which is required
for atom trapping, results from the negative contributions
to the magnetic moment (cyclotron motion of the electron
and motion of the ion), while the magnetron motion of the
electron produces high-field-seeking character. Therefore,
details of the motion (namely Ecyc, E||, ρe and Mi) de-
termine whether an atom can be magnetically trapped
or not.

Magnetic forces that result from field inhomogeneities
transverse to B, i.e. ∇|B| ⊥ B, cannot be derived in a
straightforward manner. For atoms in low-lying states,
which merely experience linear Zeeman shifts at the field
strengths of interest, this case can usually be treated by
assuming that the net magnetic moment is fixed while the
atom moves in the field, and that the magnetic moment
adiabatically follows the B-direction (i.e. the component
of the magnetic moment in B-direction is fixed). These as-
sumptions do not always hold for weakly bound two-body
systems in strong magnetic fields.

It is further noted that many combinations of the pa-
rameters (Ecyc, E||, ρe and Mi) will not yield regular orbits
such as in Figure 1. For irregular orbits, the above equa-
tions for the magnetic moment will not apply. For an orbit
to be stable, the variation of the electric field sampled by
the cyclotron motion must be moderate, i.e. the radius of
the cyclotron motion must be much less than the radius
of the magnetron motion. This condition requires ρe �√

2Ecyc/B2. For the case B = 3 T and E|| = 1.2 × 10−4,
discussed in Section 3, it must be ρe � 1200. Further,
for an orbit to be stable, the frequencies of the cyclotron,
z-bounce and magnetron motions, denoted ωcyc, ωz and
ωmag, respectively, must differ by significant factors (so
that the three motions adiabatically separate). For small
ρe, where this condition is at risk of being violated, it
is ωcyc/ωz ≈ ωz/ωmag ≈ Bρ

3/2
e . Thus, the stability con-

ditions ωcyc/ωz � 1 and ωz/ωmag � 1 are satisfied by
requiring ρe � B−2/3 (ρe � 1800 for B = 3 T). An-
other stability requirement for regular two-body drift tra-
jectories is that there must be no (near-)resonant energy
transfer between electron and ion motion. Therefore, the
cyclotron frequency of the ion, ωcyc,i = B/Mi, which is
the highest frequency of the ionic motion, must be much
less than the magnetron frequency of the electron, ωmag,
which is the lowest frequency of the electronic motion. For
planar orbits, ωmag = 1/[Bρ2

e(ρe − ρi)], with ρi given by
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equation (3). Hydrogen drift atoms in B = 3 T fields, dis-
cussed in Section 3, are found to be stable with regard
to this stability condition if ρe � 20000. For rubidium
atoms in B = 3 T fields, this stability condition requires
ρe � 100000, which is obviously much less restrictive than
in the case of hydrogen. In Section 3 we provide results in
the range 3000 ≤ ρe ≤ 20000, in which stable drift trajec-
tories for both rubidium and hydrogen atoms in 3 Tesla
magnetic fields exist.

3 Classical trajectory calculations

3.1 Computational method

The uncertainties expressed in the cautioning remarks
made in the previous paragraphs have motivated us to
derive magnetic forces and effective magnetic moments
from exact trajectory calculations. Since even in a homo-
geneous magnetic field the relative and the center-of-mass
motion do not separate [25], all trajectory calculations
we have performed are two-body calculations. Test atoms
with well-defined initial conditions for electron and ion
phase-space coordinates are immersed into a strong, mod-
erately inhomogeneous magnetic field, and the equations
of motion of the two-body problem are numerically solved
using the Runge-Kutta method. It is found that in re-
sponse to the field inhomogeneity the center-of-mass posi-
tions of the test atoms gradually accelerate over thousands
of cyclotron periods. The observed center-of-mass acceler-
ations are employed to establish relationships between the
center-of-mass force F and the field inhomogeneity of the
form

F = µz [(∇|B|) · ẑ] ẑ + µρ [(∇|B|) · ρ̂] ρ̂ (10)

where µz and µρ are effective longitudinal and transverse
moments, ẑ is a unit vector in B-direction, and ρ̂ a unit
vector in the direction of the ∇|B|-component that is
transverse to ẑ (i.e. for the case ẑ × (∇|B|) 
= 0 it is
ρ̂ = (ẑ × (∇|B|)) × ẑ/|ẑ × (∇|B|)|, while for the case
ẑ× (∇|B|) = 0 there is no ρ̂-component in equation (10)).
Relationships such as described in equation (10) are found
to apply as long as the atom remains bound. Thereby,
atoms are considered bound if both particles remain in
the close vicinity of a common center-of-mass. In the case
of bound systems, the center-of-mass gradually accelerates
— under the influence of magnetic forces — on a time scale
that is slow compared with all internal time scales of the
atom. In this paper, we are only interested in the proper-
ties of bound systems. We find that the effective moments
µz and µρ of bound atoms are different, in general. For
ionized atoms, i.e. if both particles are performing unre-
lated drift motions in the inhomogeneous magnetic field,
the center-of-mass dynamics is dominated by the motion
of the heavy particle, whose gradient and curvature drift
obviously cannot be described with equation (10) at all.

The inhomogeneous magnetic field used in our calcu-
lations is B = x̂(βx − αxz) + ŷ(−βy − αyz) + ẑ[B0 +
αz2− (α/2)(x2 + y2)], and the initial location of the atom
is typically chosen near the origin. Typically, we use a

bias magnetic field at the trap center of B0 = 3 T. To
simulate magnetic trapping in a Ioffe-Pritchard trap, we
have used a curvature parameter of α = 106 T/m2 and
a transverse field gradient of β = 3000 T/m. These val-
ues are sufficiently small that the magnetic field does not
significantly vary over the atomic size (= electron-ion sep-
aration), and they are large enough that the accelerations
acting on the atoms can be reliably determined within
reasonably short computation times (about 106 cyclotron
periods). It is noted that values of α and β used in the
calculations are about three orders of magnitude larger
than what could be realized in experiments [12].

In a homogeneous B-field there exists a constant of
motion called the pseudomomentum [25]

K = Π + B× (re − ri),

where the kinetic center-of-mass momentum Π and the
center-of-mass position R are defined as

∑
k=e,i Mkṙk and

(
∑

k=e,i Mkrk)/(
∑

k=e,i Mk), respectively. The subscripts
e and i identify electronic and ionic particle coordinates r
and masses M , respectively. The initial conditions used in
our calculations were for K = 0, corresponding to Rydberg
atoms that are initially stationary (on a time scale suffi-
ciently long to average over all internal motions of the
atoms).

The initial locations of the test atoms are chosen at
distances of about 106 atomic units from the origin. De-
pending on whether the initial displacement is in radial
(x- or y-) or in z-direction, and depending on the sign of
the effective magnetic moment, the center-of-mass trajec-
tory of the atom is magnetically trapped or anti-trapped.
The effective magnetic moment follows from respective fits
R(t) = R0 cos(ωt) or R(t) = R0 cosh(ωt) to the center-
of-mass trajectory of the atom. There, R0 is the initial
center-of-mass displacement in the coordinate direction
of interest. For initial displacement in z-direction, it is
∇|B|‖B, and the effective magnetic moment µz is ob-
tained from the fit parameter ω using ω =

√|2µzα/M |.
For initial displacement in radial direction, it is ∇|B| ⊥ B,
and the effective magnetic moment µρ is obtained using
ω =

√|(β2 − B0α)µρ/B0M |. The signs of the effective
moments follow from the magnetic-field parameters and
the type of the observed center-of-mass trajectory (mag-
netically trapped or anti-trapped).

3.2 Results of trajectory calculations

3.2.1 Rubidium Rydberg atoms

Effective magnetic moments µz and µρ of rubidium drift
Rydberg atoms obtained from trajectory calculations at
B0 = 3 T, α = 106 T/m2 and β = 0 are plotted vs. ρe in
Figure 2. For initial conditions Ecyc, E||, ρe and Mi that
yield regular drift orbits, we generally observe that equa-
tion (10) describes the center-of-mass motion very well.
We note that the variation of ρe amounts to a variation
of the magnetic quantum number m, which for the atoms
studied in this paper is negative [26] and has magnitudes
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Fig. 2. Effective magnetic moments µz and µρ, as defined
in equation (10), of Rb drift Rydberg atoms as a function
of the guiding-center position ρe. The magnetic moments are
obtained from classical two-body trajectory calculations in a
strong, inhomogeneous magnetic field of about 3 T. The ki-
netic energy of the motion perpendicular to B-field is Ecyc =
1.2 × 10−4. The initial kinetic energy parallel to the B-field
is Ekin,‖ = 0 in (a) and 2 × 10−5 in (b). The solid lines
show magnetic moments obtained from equation (9) in panel
(a) and equation (8) in panel (b). As a reference, the mag-
netic moments of a free electron, µcyc = −2Ecyc/B (lines
at µ ≈ −18.5µB) and of a ground-state Rb atom (lines at
µz = −µB) are also shown. The squares show magnetic mo-
ments obtained from a quantum-mechanical calculation (see
Fig. 4). The dotted line represents the relationship between
|m| and ρe (right axis). A colour version of the figure is avail-
able in electronic form at http://www.eurphysj.org.

as indicated on the right axes of Figures 2 and 3. Since the
motion of the orbits used in Figure 2a is confined to the
transverse plane (⊥ B), and because Mi ≈ ∞ for rubid-
ium, equation (9) approximates the numerically obtained
values for µz very well. Furthermore, µz and µρ are found
to be almost identical.

When Rydberg electrons are allowed to bounce along
the magnetic field lines, equation (10) still provides a valid
description of the center-of-mass motion. However, the av-
erage transverse electric field acting on the Rydberg elec-

Fig. 3. Magnetic moments of hydrogen drift Rydberg atoms
for transverse energy Ecyc = 1.2 × 10−4 and longitudinal en-
ergy Ekin,‖ = 0 vs. the guiding-center position ρe. The mag-
netic moments are obtained from classical two-body trajec-
tory calculations in a strong, inhomogeneous magnetic field of
about 3 T. The calculated values of µz agree well with equa-
tion (7) (solid line). For large values of ρe (or |m|), µz and
µρ are significantly different, indicating a highly anisotropic
response of the atom to magnetic-field inhomogeneities. A
colour version of the figure is available in electronic form at
http://www.eurphysj.org.

tron (〈Ftrans〉 in Eq. (5)) diminishes because the average
distance between the Rydberg electron and the ion in-
creases, and because only the component of the Coulomb
field transverse to B is taken. Due to the diminished trans-
verse electric field, both the magnetron velocity and the
magnetron magnetic moment become reduced, and the
atoms become more low-field-seeking, i.e. they have mag-
netic moments that are more negative than in the case of
planar motion. This becomes evident by comparing the
moments in Figure 2b, which have been obtained for a
(total) bounce energy of E|| = 2×10−5, with those in Fig-
ure 2a. For large values of ρe, a slight difference between
µz and µρ becomes noticeable. Further, we find that equa-
tion (8) approximates the numerically obtained values for
µz in Figure 2b very well.

3.2.2 Hydrogen Rydberg atoms

Effective moments µz and µρ of hydrogen drift Rydberg
atoms are displayed in Figure 3. The figure shows that
equation (7), represented by the solid line, provides a
valid approximation to µz, except for small ρe. For small
ρe, equation (7) gradually breaks down because with de-
creasing ρe the time scales of the cyclotron, z-bounce and
magnetron components of the electronic motion become
increasingly similar, and orbits tend to turn from regular
drift orbits into chaotic orbits (see discussion at the end of
Sect. 2.2). Comparing the moments obtained from equa-
tion (7) (solid line in Fig. 3) and (9) (short-dashed line
in Fig. 3), it is further noted that the value of µz for hy-
drogen is more negative than that for heavy ionic masses.
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Thus, in the coordinate direction parallel to B hydrogen
drift-state Rydberg atoms are more easily trapped than
heavy ones. This difference is due to two effects. First, in
the case of hydrogen the ionic motion contributes a signif-
icant negative amount to µz (which is absent in the case
of infinite ion mass). Second, in the case of hydrogen the
positive contribution of the electron magnetron motion
to µz is reduced relative to that in the case of infinite ion
mass. The latter difference is due to the dependence of the
electron magnetron radius, ρe − ρi, on the ion mass (see
Fig. 1).

Figure 3 further shows that in the case of hydrogen
the difference between µz and µρ becomes a dominant ef-
fect. With increasing value of ρe, the atomic binding of
the drift atoms decreases, and |µρ| is seen to become con-
siderably less than |µz|. Thus, with increasing ρe radial
trapping becomes considerably less effective than longi-
tudinal trapping. This trend amounts to an increasingly
anisotropic response of the drift atoms to field inhomo-
geneities parallel and transverse to B. We have performed
calculations with different field curvatures, and have con-
firmed that the effective moments µz and µρ shown in
Figure 3 are independent of the field curvature.

4 Quantum mechanical calculation

For the case Mi = ∞, which is a good approximation
for rubidium, we have computed magnetic dipole mo-
ments from quantum spectra. The moments follow from
the energy-level shifts of Rydberg states calculated for two
slightly different homogeneous magnetic fields. The mag-
netic moment of a state that shifts in energy by an amount
∆E if the magnetic field is changed by a small amount ∆B
is given by µ = −∆E/∆B.

To calculate the energy levels of bound drift Rydberg
states in strong magnetic fields an adiabatic model can
be used, as explained in references [21,22]. While exact
energy levels can also be easily obtained by accounting for
non-adiabatic corrections [22], we find that the magnetic
moments derived from adiabatic and exact energy levels
are very similar. Therefore, for simplicity we only show
magnetic moments obtained from adiabatic energy levels.
The results for magnetic quantum numbers m = −100 and
m = −250 are plotted in Figure 4 vs. the energy of the
quantum Rydberg levels. Inspection of the figure shows
that the data points follow a regular pattern characterized
by diagonal lines from the upper left to the lower right. It
turns out that each line corresponds to a certain number of
energy quanta in the transverse (cyclotron) motion, while
the ordering of the data points within each line reflects
the number of excitations in the z-bounce motion. We
denote the respective quantum numbers nc and nz (both
start counting from zero) and indicate them in Figure 4.
The figure shows that atoms with larger cyclotron (nc)
and z-bounce (nz) quantum numbers have more negative
magnetic moments, as expected.

Magnetic moments extracted from Figure 4 and cor-
responding data sets for other m-values (not shown) are
compared with the classical results in Figure 2. For the

Fig. 4. µz for Rydberg states with m = −100 (a) and
m = −250 (b) from quantum-mechanical calculations. Each
point corresponds to an adiabatic Rydberg level with spe-
cific cyclotron (nc) and z-bounce (nz) quantum numbers. The
states with nc = 9 and nz = 0, marked in both panels, corre-
spond closely to data in Figure 2a at m = −100 and m = −250.
A colour version of the figure is available in electronic form at
http://www.eurphysj.org.

comparison, we choose quantum levels with nc = 9 in
order to match the kinetic energy of the perpendicular
motion used in Figure 2 (Ecyc = 1.2 × 10−4). To obtain
quantum analogues of the data in Figure 2a with planar
electronic motions, we take the lowest two nz-states in
the nc = 9-series and extrapolate the magnetic moments
of these states in a manner that a value corresponding to
zero z-bounce energy is obtained. As seen in Figure 2a,
the agreement between classical and quantum data is ex-
cellent. In a similar manner, magnetic moments that cor-
respond to a longitudinal energy E‖ = 2 × 10−5 can be
extracted from Figure 4 and similar plots using an inter-
polation method between data points. The results, shown
in Figure 2b, also agree very well with classical values. The
observed agreement is expected based on the correspon-
dence principle, and it justifies our use of classical mod-
els to determine the magnetic moments of drift Rydberg
states.
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5 State-analysis of trapped Rydberg atoms

In the remainder of this paper, we utilize the obtained re-
sults to develop an approximate idea of the nature of drift
Rydberg states that have been trapped in recent experi-
ments [12]. There, we have found that drift-state Rydberg
atoms can be trapped in shallow Ioffe-Pritchard magnetic
traps [27] with central magnetic fields of about 3 T and
a trap depth of ≈0.03 T. The average magnetic moment
of the trapped Rydberg atoms was measured to be −8µB.
Here, we characterize the range of states with magnetic
moments of that order. These are the states that likely
were populated in the high-B Rydberg-atom trapping ex-
periment described in reference [12].

To fill the high-B Ioffe-Pritchard trap with drift
Rydberg atoms, we first laser-excite cold atoms prepared
in the trap into low-|m| Rydberg states. In the following
tens of microseconds, these atoms undergo collisions with
free electrons and with other Rydberg atoms, as is also ob-
served under magnetic-field-free conditions [4–8]. In high
B-fields, Rydberg-Rydberg collisions may be more preva-
lent than under field-free conditions, because Rydberg
atoms in high B-fields can have very large permanent
quadrupole moments that can cause attractive forces be-
tween atoms. Penning-ionizing collisions [4,8,28] generate
free electrons with energies in the range of 10 meV, which
may further collide with other Rydberg atoms. In strong
magnetic fields, collisions between Rydberg atoms with
free electrons and other Rydberg atoms cause m-mixing
and partial transformation of the population into high-|m|
drift Rydberg states. Since the density of states of the drift
atoms is very large, the Rydberg atoms mostly evolve from
low-|m| into drift states (with negligible backward evolu-
tion). Also, due to the rapid drop of Rydberg-atom and
charged-particle density after the laser excitation, the col-
lisions will largely cease after of order 100 microseconds,
leaving behind a cloud of drift-state atoms in a distribu-
tion of m. Further investigations will be required in order
to understand this collision-induced evolution in more de-
tail. It is presently not clear whether it will be possible
to obtain some control over the m-distribution by varying
parameters such as the initial density, the Rydberg state,
bias static electric fields, electric-field pulses etc.

It is assumed that during the collisions which turn a
low-|m| state into a drift-state atom the Rydberg-atom en-
ergy does not change very much. In the following classical
computation, we therefore consider drift-atom trajectories
with a fixed total energy of Etot = −3.0×10−5, which was
the laser excitation energy used in reference [12]. The cy-
clotron energy of the electron, Ecyc, is expressed in terms
of cyclotron quanta, nc = Ecyc/B − 1/2 (which in a clas-
sical computation is not necessarily an integer). The drift
trajectory is further characterized by the z-component of
the canonical angular momentum, |m| (m < 0). The re-
lation |m| = (B/2)ρ2

e fixes the value of ρe. The z-bounce
motion is fully characterized by the value of ρe and the
longitudinal energy, E‖ = Etot − Ecyc. Consequently, the
drift trajectories for given total energy Etot can be repre-
sented on the (|m|, nc)-plane. Their magnetic moments are
obtained using equation (8). In order to conform with the

Fig. 5. Magnetic moments of Rb drift-state atoms in units of
µB vs. magnetic quantum number |m| (m < 0) and cyclotron
excitation number nc obtained from classical calculations. A
total energy of –3.0 × 10−5 is assumed, which is equivalent
to n ≈ 130 in B-field-free atoms. The total energy is equiva-
lent to the laser-excitation energy of atoms in reference [12].
A colour version of the figure is available in electronic form at
http://www.eurphysj.org.

experiment described in [12], which has been performed
with a spin-polarized atomic sample, we add a magnetic
moment of −µB to account for the intrinsic electron spin.
The result in Figure 5 shows that all the drift atoms on
the (|m|, nc)-plane plane would be magnetically trapped
(i.e. µ < 0). Further, the experimentally observed range
of magnetic moments, −11µB � µ � −5µB, is seen to
correspond to an m range of |m| � 400 and a nc-range of
3 � nc � 12.

As Figure 5 shows, for suitable excitation energy al-
most all drift-state atoms are magnetically trapped. Once
atoms are scattered into trapped states (µ < 0) with |m|
of order several hundreds, they have fairly low radiative
decay rates [26]. Further, secondary collisions are expected
to not change their drift-state character very much. The
atoms will tend to remain in trapped states even if the de-
tailed quantum numbers of the atoms might change due
to secondary collisions. We believe that for these reasons
the experimental demonstration of Rydberg-atom trap-
ping [12] succeeded first in a high-magnetic-field trap.

6 Summary

We have investigated the magnetic trapping dynamics of
drift Rydberg states by computing magnetic moments
both classically and quantum mechanically. In Rb drift
Rydberg atoms, the magnetic moment can be attributed
to the cyclotron and the magnetron motion of the Rydberg
electron. In the case of hydrogen, the motion of the ion
needs to be considered additionally, revealing the two-
body nature of the problem. We have found an anisotropic
response of hydrogen drift atoms to magnetic-field in-
homogeneities longitudinal and transverse to B. The
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anisotropy is expected to limit the range of drift states
that could be magnetically trapped in antihydrogen ex-
periments. The results have been applied to estimate
the range of states that have been trapped in a recent
Rydberg-atom trapping experiment. Radiative decay of
drift Rydberg atoms has not been considered in the state-
analysis presented in this paper. Generally, states with
higher nc or lower |m| have smaller lifetimes than the
states with lower nc or higher |m| [26]. Therefore, mea-
surements of the average lifetime of trapped drift Rydberg
atoms could, in future, be used for further analysis of the
trapped atoms.

This work was supported by the Chemical Sciences, Geo-
sciences and Biosciences Division of the Office of Basic Energy
Sciences, Office of Science, U.S. Department of Energy.
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